

Radar Feature

Feature	Primary Application	Skill to Determine Tornadogenesis Potential	Important Note
Z _{DR} Arc (<65 nm from the radar)	Anticipate low-level meso (<2 km) intensity trends	Noderate – Infers dynamic lift potential from low-level meso ahead of time	Combine with separation vector angle in weak to moderate low-level SRH (0-1-km <200) environments
Separation Vector Angle (<65 nm from the radar)	Separation between K _{DP} Foot and Z _{DR} Arc can help anticipate low-level meso intensity trends	<u>Moderate</u> – Infers potential dynamic lift from low-level meso ahead of time	Value of angle is less critical in stronger low-level SRH (0-1-km >200) environments
Z _{DR} Arc Disruption (<65 nm from the radar)	Degree of negative buoyancy in near- surface airstream below meso	High – Stronger negative buoyancy typically inhibits tornadogenesis	Zero/Negative K _{DP} within disruption infers dry hail region that <u>may not</u> significantly add neg. buoyancy; genesis possible despite disruption
Left Flank Velocity Enhancement (LFVE) (<40 nm from the radar)	Track near-surface airstream feeding into region below low-level meso	High – Positioning of airstream convergence relative to low-level meso critical for genesis	Convergence signature under meso infers crosswise to streamwise vorticity exchange needed for genesis
Low-level V _r (<65 nm from the radar; feature not illustrated)	Diagnostic tracking of low-level meso intensity trends	Minimal – Diagnostic nature limits skill to largely reactionary rather than predictive	Can be used as a diagnostic intensity tool for an ongoing tornado
Storm Depth Max V _r (feature not illustrated)	Diagnostic tracking of maximum full volume meso intensity trends	Minimal – Diagnostic nature limits skill to largely reactionary rather than predictive	Can be used as a prognostic intensity tool for an ongoing tornado
Z _H "Hook" Signature (feature not illustrated)	Infers strength of mid-level meso to redistribute precipitation	Minimal – Many non-tornadic supercells have hooks	Some hooks infer strong negative buoyancy that inhibits genesis

Feature	Primary Application	Skill to Determine Tornadogenesis Potential	Important Note
Separation Vector Angle (<65 nm from the radar)	Separation between K _{DP} Foot and Z _{DR} Arc can help anticipate low-level meso intensity trends	Moderate – Infers potential dynamic lift from low-level meso ahead of time	Value of angle is less critical in stronger low-level SRH (0-1-km >200) environments

Feature	Primary Application	Skill to Determine Tornadogenesis Potential	Important Note
Z _{DR} Arc Disruption (<65 nm from the radar)	Degree of negative buoyancy in near-surface airstream below meso	High – Stronger negative buoyancy typically inhibits tornadogenesis	Zero/Negative K _{DP} within disruption infers dry hail region that <u>may not</u> significantly add neg. buoyancy; genesis possible despite disruption

Negative buoyancy implied by zero/negative Z_{DR}

LFVE Conceptual Model

Feature	Primary Application	Skill to Determine Tornadogenesis Potential	Important Note
Left Flank Velocity Enhancement (LFVE) (<40 nm from the radar)	Track near-surface airstream feeding into region below low-level meso	High – Positioning of airstream convergence relative to low-level meso critical for genesis	Convergence signature under meso infers crosswise to streamwise vorticity exchange needed for genesis

Radar Viewing angle dependent (could be inbound or outbound)

• Difficult to interpret when LFVE is orthogonal to the radar beam Best viewed <1 km (<40 nm from the radar)

LFCB – Left-Flank Convergence

Boundary

FFCB – Forward-Flank

Convergence

Boundary

SVC – Streamwise

Vorticity Current

FFRG – Forward-flank

Reflectivity Gradient

RFDB – Rear-flank

Downdraft Boundary

LFVE Examples

Feature	Primary Application

Skill to Determine Tornadogenesis Potential **Important Note**

Left Flank Velocity Enhancement (LFVE)

Track near-surface airstream feeding into region below lowlevel meso

High – Positioning of airstream convergence relative to low-level meso critical for genesis

Convergence signature under meso infers crosswise to streamwise vorticity exchange needed for genesis

Radar Viewing angle dependent (could be inbound or outbound)

• Difficult to interpret when LFVE is orthogonal to the radar beam Best viewed <1 km (<40 nm from the radar)

Non-Tornadic

